大類間方差法根據圖像的灰度特性尋找闕值,使分割出的圖像區域之間的差別大,用于判斷分割圖像區域之間的差別是其各區域間的內部方差。大類間方差法極易受到噪音的影響,如陰影,但在單純背景條件下,適用于初步的獲取目標物的位置。大熵闕值法與大類間方差原理類似,將圖像通過信息熵分為不同區域。信息熵在混亂無序的系統中較大,在確定有序的系統中較小,根據信息熵的特性,可將圖像分割為不同的區域。
基于編碼結構的圖像分割網絡雖然能在復雜背景及環境中基于特征分割出圖像區域,不過其提取的輪廓特征依然較為粗糙,不足為真實尺寸測量提供依據,直到MaskRCNN才做到了像素級圖像分割,為尺寸測量提供了依據。除此之外,MaskRCNN將目標檢測和語義分割結合,對農產品尺寸測量及分類提供了指導性算法,也是目前研究優化的主要方向。